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Objective: Introduce Discrete Fracture Network methods for rockmass modelling

Modeling
) modeling
Outcrop
>10m
Relevant complexity Modeling purpose

* Anisotropy * Stress, strain, hydraulic, transport, HM, thermal
* Scale effect * Available data
* Integration from cm to km * Modeling as DEM, discrete or equivalent continuous

modeling

Define which metric of a DFN is the controlling factor of rockmass elastic properties
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Classical approach: fractured rock as a block assembly

(RQOD, RMR, Q, GSI) are adapted to heavily jointed rock masses
Use of GSI to reduce strength ® Assembly of blocks
of samples with defects such

as micro-fractures and veins

* Several sets of potentially infinite fractures (isotropy)
- * Fractured system Scale = spacing

Intact rock - do not use GSI
Use Hoek Brown to check
for tensile and shear failure

Applicable when model resolution >> spacing
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Quantitative description
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Blocky rack mass with minimal
anisotropy - use GSI with caution

Heavily jointed rock mass

Use of GS| is appropriate (Hoek and Brown, 2018)

ITASCA SYMPOSIUM, VIENNA 17-21 FEBRUARY 2020



Concepts for fractured rock

Block Assembly population of individual fractures
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Fractured rock — block Assembly vs Network of fracture

population of individual fractures
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Fractured rock — block Assembly vs Network of fracture

population of individual fractures
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Fractured rock — block Assembly vs Network of fracture

population of individual fractures

Need to assess the density vs size
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Description of the fractured rock with DEN

Originally applied to A go

= Crystalline rocks

Potential host for nuclear waste storage
= Connectivity, flow and transport modeling
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Observation and mapping

Mapping conditions: Resolution and Censoring

Physical boundaries of the distribution, min and max
sizes, not directly accessible
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Figure 5-2. Fracture trace map of the ASM0O00025 outcrop.
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A Fracture, what is it

10m

A fracture in the model is an ensemble of fracture segments that define
a consistent plane (mechanical coherence).
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A Fracture, what is it

Roughly Planar discontinuity

Resulting from rock failure controlled by
physical processes and field conditions

Can be cracks, joints, faults, shear zones,
bedding planes

Lateral dimensions >> thickness

2D planar object

Position, size, orientation, shape
Flow, transport, mechanical properties

... to the fracture population (Discrete Fracture
Network)
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Build the fracture size density distribution n(l)
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Figure 5-2. Fracture trace map of the ASM000025 outcrop.

[SKB report P-04-35]
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Logarithmic binning to count the number of
fracture traces whose size I is in the range
L1+ dl

Normalized by map area and bin size

1 N(I<U<l+dlL)
area dl

nyp(l) =

Physical boundaries of the distribution, min
and max sizes, not directly accessible

Count orientations

Variability ...

Stereological analysis required for a 3D model

n2p (1)
v }“xﬁ\
\x\‘
1] =

0.1 17 5

04 06 08 1 2 4
Fracture trace size [
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Example — 2D trace size distribution
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Fracture trace size [

N

Power-law trend may be identified
n)=a-17¢
from a limited observation range

parameters independent from
observation range
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From data to size distributions — Laxemar site

10’ 10°
fracture trace length (m)

10°

Power-law model for n(l) consistent with
observations

Single or double power-law model

Power-law model is a good proxy to model
density variation with scale
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DFN in the Rockmass [

11111

11111

e Multiscale DFN

* No a priori REV

e P, (m?/m3) dominated by small fractures
* Connectivity related to large fractures

* Mechanical properties potentially related to size and orientations
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Scale, resolution, size, density

Resolution
o increase

< | Start by one single fracture

Resolution decrease

System dimension”
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Predicting equivalent elastic properties

"= From single fracture to fracture population (DFN)

= DFN: any set of disc-shaped planar fractures (multi-oriented, multi-scale)
= Elastic conditions (no damage)

" Rock matrix: isotropic elastic, Young’s modulus E,,, and Poisson ratio v,,

=  Fracture mechanical model

= Coulomb slip, cohesion (c), friction (angle @), normal (k,) and shear stiffness (k)
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Mechanical model - single fracture

Tf 4
T =ket  if T <71,
0.
Tf n T =T, if T> 1,
~ 7c = 0n(8)tg(p) + C
% T =0 if@=0o0rk;,=0
S Frictionless fracture
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Single fracture isolated

§ O

3SDEC DP5.20

2017 ltasca C?nsulting Group. Inc.
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Frictionless isolated fracture

shear
disp.
Remote stress
T shear stress
Intact rock
Vi, Poisson ratio
E,  Modulus
Fracture
[ size
t average shear displacement

k., equivalent matrix to fracture stiffness

Stress and displacement at fracture
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Frictional isolated fracture

Fracture friction, cohesion and stiffness terms ’
[Davy et al, 2018]

Stress and displacement at fracture Displacement profile
stress Oy P
10 o k:=5*109
shear stress © k=1*10"

T
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shear disp.

T T T T
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distance to disk centre

Remote stress

T shear stress

Intact rock — _r
Vp,  Poisson ratio kmt+ks
E,  Modulus

Fracture

[ size

t average shear displacement
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Stress perturbation around a fracture

ColorScale of Von Mises Stress
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Two regimes for the shear displacement

WithlS=E—m
ks
| K], ==y t=——r~—o]

- 4 If kg is negligible, fracture size
defines the shear displacement

If kg is dominant, shear

[ > lS ) t = ! ' displacement is independent

from fracture size

Q

=) Fracture sizes are critical
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Shear vs slipping regime for [ << [,

T
TC — * TC
ks
lc
Remote stress
T shear stress
Intact rock
Vi, Poisson ratio
E,  Modulus
Fracture
[ size
t average shear displacement

Em
K ~=

Shear regime

Slip regime
Critically stressed fractures

Difference

related to [/l

~ V

=) Fracture sizes are critical

equivalent matrix to fracture stiffness

Critically stress regime
threshold is size dependent
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From single fracture to DFN and rock mass (@
o ——

I . . Rock ith DFN
DFN contribution to rock mass strain tensor € : ock mass wi

Sum the contribution of each fracture f and intact rock m

€ij = Zf(fij)f + (€ij)m

I Sample Surface

S
Fracture [ contribution to rock mass strain \\
J
Se(ng. I) te(se.]J) Set
fAf £t ff
€)= : = (. 1)(s.))
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Fracture network to rock mass strain &

DFN contribution to rock mass strain tensor € :
Sum the contribution of each fracture f and intact rock m

€jj = Zf(fij)f + (€ij)m

Derive effective compliance tensor components Cj ji;: Davy et al., 2018, Elastic properties of
fractured rock masses with frictional

= (.. properties and power-law fracture size
€ij = C; jklOKkl distributions: JGR, v. 123, p. 6521 - 6539.

General case conditions :

* Shear displacement (k)

* Effective theory to account for fracture interactions for large densities
* Change of regime for critically stressed fractures (slipping, dilation)

* Normal displacement (k,,)
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Comparison to numerical simulations

EIE_
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simulations
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Predicting E. ¢ ¢ with analytical solutions for simple cases C
k, > kg =0 @

E (GPa)

60

50 4 |

40

30

20

10

T T T

5 10 15
percolation parameter, p,

In this case, the DFN percolation
parameter p(0) is the controlling factor
of the rockmass effective elastic modulus

Eorr = Egexp(—c - p(6))

1
p(0) = sz (l?‘ cos? o sin? Hf)
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Predicting E ¢ ¢ with analytical solutions for simple cases - ky, >> kg constant

Em
Over DFN range | «< [ Over DFN range [ > [ ls =2
S
E.rr = i
Eerp = Em exp(=c-p(6)) /1 = Py (0) + ks/Em
A \\
1 "3 1 2 2 )
n(6) = _Z I3 cos2 0. sin? 0 RS P35 (8)~ = X f 5 cos® 0 sin” 6 /\
V f( f f f) m) 14
p — so called percolation parameter P3, total fracture surface per unit volume

Application to realistic multiscale DFN

pg(l) . . . .
Potential size effect since p | / No size effect since P53, is scale independent
is scale dependent

Domain size L ITASCA SYMPOSIUM, VIENNA 17-21 FEBRUARY 2020 H 2



IAppIicu’rion to site conditions — Forsmark case I

" |nput: generated DFN
= |nput : Intact rock properties
= |nput : stress state

= Qutput:
= Compliance tensor
= Scale effect
= Level of anisotropy

_—
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Application - DEN and rock conditions
SKB Forsmark site, Sweden

DFN (FFM01 unit) .
w N —— UFM arrest
S —— UFM growth
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Evolution of E;; with L

[GPa]

—
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Given the DFN conditions:

* If kg such that | K [ — maximise the

scaling effect

0 T T T T T T
0 10 20 30

L
Increasing domain size L tend to put more large
fractures without significantly changing Ps,

40

v
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Evolution of E;; with L

Given the DFN conditions:

~ - __ With current mechanical properties
50 - e e (k)= 3.4e10 GPa.m™!
---------------------------- « 1.5m<[,<35m

Decrease of E;; with L up to ~10m.

[GPa]

251  E,, decrease from 76 Gpa to about
207 62 GPaq, i.e. about 25%. *

0 10 20 30 40
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Evolution of E;; - Anisotropy

[GPa]

20-25%

10

20

30

40

E;; variations : 60 to 70 Gpa
(about 12%)

E,, less affected by fractures
than horizontal E},,

(Horizontal directional Ej,,
consistent with fracture sets NE
and NWV, less affected by
fracture shearing are at trend

45°)
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SUMMARY

DFN representation of rockmass help to integrate
multiscale fracture distribution

Rockmass effective properties can be derived
and controlling factors — as a combination
between mechanical, geometrical and scale -
identified

Extent of scale effect and anisotropy can be
quantified

Tool (DFN.Iab) to integrate DFN in
geomechanical models
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DEN.lab  Numerical platform for modelling fractured media
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